
Chapter 9: Advanced Deep Learning for Computer
Vision

Matthew Kehoe

9.4: Interpreting what convnets learn

May 31, 2023

François Chollet Deep Learning with Python May 31, 2023 1 / 24



Overview

1 Introduction

2 9.4.1: Visualizing intermediate activations

3 9.4.2: Visualizing convnet filters

4 9.4.3: Visualizing heatmaps of class activation

5 Other Visualization Techniques (from CS231)

François Chollet Deep Learning with Python May 31, 2023 2 / 24

https://cs231n.github.io/


Introduction

General Information

1 Google Research Machine Learning: Link.

2 Fork the Github repository here.

3 Using Github with Google Colab: Link.

4 Course at Stanford: Link.

5 Upgrade your memory on Google Colab: Link. Doesn’t work anymore.

6 Convnet: A convolutional neural network (CNN or convnet) is a
subset of machine learning. It is one of the various types of artificial
neural networks which are used for different applications and data
types. A CNN is a kind of network architecture for deep learning
algorithms and is specifically used for image recognition and tasks
that involve the processing of pixel data.

François Chollet Deep Learning with Python May 31, 2023 3 / 24

https://research.google/research-areas/machine-intelligence/
https://github.com/fchollet/deep-learning-with-python-notebooks
https://bebi103a.github.io/lessons/02/git_with_colab.html
https://cs231n.github.io/understanding-cnn/
https://towardsdatascience.com/upgrade-your-memory-on-google-colab-for-free-1b8b18e8791d


Introduction

The Xception Model

Xception stands for the extreme version of Inception. With a modified
depthwise separable convolution, it is even better than Inception-v3.
It was developed at Google: Summary and Paper.

François Chollet Deep Learning with Python May 31, 2023 4 / 24

https://towardsdatascience.com/review-xception-with-depthwise-separable-convolution-better-than-inception-v3-image-dc967dd42568
https://arxiv.org/abs/1610.02357


Introduction

Problems with Computer Vision Applications

A fundamental problem when building a computer vision application
is that of interpretability: why did your classifier think a particular
image contained a bike, when all you can see is a sedan?

This is especially relevant to use cases where deep learning is used to
complement human expertise, such as in medical imaging use cases.

It’s often said that deep learning models are “black boxes”: they learn
representations that are difficult to extract and present in a human-
readable form.

Although this is partially true for certain types of deep learning
models, it’s definitely not true for convnets.

François Chollet Deep Learning with Python May 31, 2023 5 / 24



Introduction

Section 9.4 Summary

The representations learned by convnets are highly amenable to
visualization, in large part because they’re representations of visual
concepts. Techniques for conceptualizing these representations include

1 Visualizing intermediate convnet outputs (intermediate activations)
— Useful for understanding how successive convnet layers transform
their input, and for getting a first idea of individual convnet filters.

2 Visualizing convnet filters — Useful for understanding precisely what
visual pattern or concept each filter in a convnet is receptive to.

3 Visualizing heatmaps of class activation in an image — Useful for
understanding which parts of an image were identified as belonging to
a given class, thus allowing you to localize objects in images.

François Chollet Deep Learning with Python May 31, 2023 6 / 24



9.4.1: Visualizing intermediate activations

Visualizing intermediate activations

Display the values returned by various convolution and pooling layers
in a model, given a certain input (the output of a layer is often called
its activation, the output of the activation function).

This gives a view into how an input is decomposed into the different
filters learned by the network.

We want to visualize feature maps with three dimensions: width,
height, and depth (channels). Each channel encodes relatively
independent features, so the proper way to visualize these feature
maps is by independently plotting the contents of every channel as a
2D image.

François Chollet Deep Learning with Python May 31, 2023 7 / 24



9.4.1: Visualizing intermediate activations

Model: Cats-versus-dogs classification problem in §8.2

We will start by loading the model we saw in Section 8.2.

I will do this by expanding what François Chollet wrote in Google
Colab.

François Chollet Deep Learning with Python May 31, 2023 8 / 24



9.4.2: Visualizing convnet filters

Gradient Ascent and Gradient Descent

To find a local minimum of a function using gradient descent, one
takes steps proportional to the negative of the gradient (or of the
approximate gradient) of the function at the current point.
If instead one takes steps proportional to the positive of the gradient,
one approaches a local maximum of that function; the procedure is
then known as gradient ascent.

François Chollet Deep Learning with Python May 31, 2023 9 / 24



9.4.2: Visualizing convnet filters

Other Visualization Techniques

Several approaches for visualizing and understanding CNNs have been
developed in the literature as a response to the common criticism that
Neural Networks are not interpretable. These include:

Visualizing the activations and first-layer-weights

Retrieving images that maximally activate a neuron

Embedding the codes with t-SNE

Occluding parts of the image

Visualizing the data gradient and friends

and much more

François Chollet Deep Learning with Python May 31, 2023 10 / 24



9.4.2: Visualizing convnet filters

Visualizing the activations

Layer activations: one of the most straight-forward visualization
techniques is to show the activations of the network during the
forward pass.

In ReLU networks, activations start out looking blobby and dense. As
the training progresses, activations usually become more sparse and
localized.

With this visualization, it is easy to see where some activation maps
are all zero, which can indicate the presence of dead filters and show
high learning rates.

François Chollet Deep Learning with Python May 31, 2023 11 / 24



9.4.2: Visualizing convnet filters

Visualizing the activations (continued)

Typical-looking activations on the first CONV layer (left), and the 5th
CONV layer (right) of a trained AlexNet looking at a picture of a cat.
Every box shows an activation map corresponding to some filter. Notice
that the activations are sparse (most values are zero, as shown in black)
and are mostly local.

François Chollet Deep Learning with Python May 31, 2023 12 / 24

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf


9.4.2: Visualizing convnet filters

Visualizing the first-layer weights

Conv/FC filters: The second common strategy is to visualize the
weights.

These are usually most interpretable on the first CONV layer which is
looking directly at the raw pixel data, but it is possible to also show
the filter weights deeper in the network.

The weights are useful to visualize because well-trained networks
usually display nice and smooth filters without any noisy patterns.

Noisy patterns can be an indicator of a network that hasn’t been
trained for long enough, or possibly a very low regularization strength
that may have led to overfitting.

François Chollet Deep Learning with Python May 31, 2023 13 / 24



9.4.2: Visualizing convnet filters

Visualizing the first-layer weights (continued)

Typical-looking filters on the first CONV layer (left), and the 2nd CONV
layer (right) of a trained AlexNet. Notice that the first-layer weights are
very nice and smooth, indicating a nicely converged network. The 2nd
CONV layer weights are not as interpretable, but it is apparent that they
are still smooth, well-formed, and absent of noisy patterns.

François Chollet Deep Learning with Python May 31, 2023 14 / 24



9.4.2: Visualizing convnet filters

Retrieving images that maximally activate a neuron

Another visualization technique is to take a large dataset of images
and feed them into the network while keeping track of which images
maximally activate a neuron.

We can then visualize the images to get an understanding of what the
neuron is looking for in its receptive field.

This visualization technique (among others) is shown in Rich feature
hierarchies for accurate object detection and semantic segmentation
by Ross Girshick et al.

François Chollet Deep Learning with Python May 31, 2023 15 / 24

https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1311.2524


9.4.2: Visualizing convnet filters

Retrieving images that maximally activate a neuron (ctd)

Maximally activating images for some POOL5 (5th pool layer) neurons of
an AlexNet. The activation values and the receptive field of the particular
neuron are shown in white. (In particular, note that the POOL5 neurons
are a function of a relatively large portion of the input image). It can be
seen that some neurons are responsive to upper bodies, text, or specular
highlights.

François Chollet Deep Learning with Python May 31, 2023 16 / 24



9.4.2: Visualizing convnet filters

Retrieving images that maximally activate a neuron (ctd)

One problem with this approach is that ReLU neurons do not
necessarily have any semantic meaning by themselves.

Rather, it is more appropriate to think of multiple ReLU neurons as
the basis vectors of some space that represents in image patches. In
other words, the visualization is showing the patches at the edge of
the cloud of representations, along the (arbitrary) axes that
correspond to the filter weights.

Further analysis was performed by Szegedy et al. in Intriguing
properties of neural networks, where they perform a similar
visualization along arbitrary directions in the representation space.

François Chollet Deep Learning with Python May 31, 2023 17 / 24

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199


9.4.2: Visualizing convnet filters

Embedding the codes with t-SNE

Convnets can be interpreted as gradually transforming the images into
a representation in which the classes are separable by a linear
classifier.

We can get a rough idea about the topology of this space by
embedding images into two dimensions so that their low-dimensional
representation has approximately equal distance as the
high-dimensional representation.

There are many embedding methods which embed high-dimensional
vectors in a low-dimensional space while preserving the pairwise
distance between the points. One of the most popular methods is
t-Distributed Stochastic Neighbor Embedding (t-SNE).

François Chollet Deep Learning with Python May 31, 2023 18 / 24

http://lvdmaaten.github.io/tsne/


9.4.2: Visualizing convnet filters

Embedding the codes with t-SNE

To produce an embedding, we can take a set of images and use the
ConvNet to extract the CNN codes (e.g. in AlexNet the
4096-dimensional vector right before the classifier, and crucially,
including the ReLU non-linearity).

We can then plug these into t-SNE and get 2-dimensional vector for
each image. The corresponding images can them be visualized in a
grid.

François Chollet Deep Learning with Python May 31, 2023 19 / 24



9.4.2: Visualizing convnet filters

Embedding the codes with t-SNE (continued)

t-SNE embedding of a set of images based on their CNN codes. Images
that are nearby each other are also close in the CNN representation space,
which implies that the CNN ”sees” them as being very similar. Notice that
the similarities are more often class-based and semantic rather than pixel
and color-based. For more details on how this visualization was produced
see the t-SNE visualization of CNN codes.

François Chollet Deep Learning with Python May 31, 2023 20 / 24

http://cs.stanford.edu/people/karpathy/cnnembed/


9.4.3: Visualizing heatmaps of class activation

Occluding parts of the image

Suppose a ConvNet classifies an image as a dog. How can we be sure
that it is actually picking a dog as oppose to some contexual clues
from the background of the image?

One way of investigating which part of the image the ConvNet
predicts is by plotting the probability of the class of interest (e.g., dog
class) as a function of the position of an occluder object.

That is, we iterate over regions of the image, set a patch of the image
to be all zero, and look at the probability of the class.

We can then visualize the probability as a 2-dimensional heat map.

François Chollet Deep Learning with Python May 31, 2023 21 / 24



9.4.3: Visualizing heatmaps of class activation

Occluding parts of the image (continued)

Three input images (top). Notice that the occluder region is shown in
grey. As we slide the occluder over the image we record the probability of
the correct class and then visualize it as a heatmap (shown below each
image). For instance, in the left-most image we see that the probability of
Pomeranian plummets when the occluder covers the face of the dog.

François Chollet Deep Learning with Python May 31, 2023 22 / 24



Other Visualization Techniques (from CS231)

Visualizing the data gradient and friends

Data Gradient: Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps.

DeconvNet: Visualizing and Understanding Convolutional Networks.

Guided Backpropagation: Striving for Simplicity: The All
Convolutional Net.

François Chollet Deep Learning with Python May 31, 2023 23 / 24

https://cs231n.github.io/
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806


Other Visualization Techniques (from CS231)

Other Techniques

Reconstructing original images based on CNN Codes: Understanding
Deep Image Representations by Inverting Them.

How much spatial information is preserved? Do ConvNets Learn
Correspondence? (tldr; yes)

Plotting performance as a function of image attributes: ImageNet
Large Scale Visual Recognition Challenge.

Fooling ConvNets: Explaining and Harnessing Adversarial Examples.

Comparing ConvNets to Human labelers: What I learned from
competing against a ConvNet on ImageNet.

François Chollet Deep Learning with Python May 31, 2023 24 / 24

https://cs231n.github.io/
http://arxiv.org/abs/1412.0035
http://arxiv.org/abs/1412.0035
http://papers.nips.cc/paper/5420-do-convnets-learn-correspondence.pdf
http://papers.nips.cc/paper/5420-do-convnets-learn-correspondence.pdf
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1412.6572
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

	Introduction
	9.4.1: Visualizing intermediate activations
	9.4.2: Visualizing convnet filters
	9.4.3: Visualizing heatmaps of class activation
	Other Visualization Techniques (from cyan CS231)

