
Calculating zeros of the Riemann zeta function

Matthew Kehoe

March 15, 2022

Matthew Kehoe Zeros of the Riemann zeta function March 15, 2022 1 / 85



Overview

1 Introduction

2 Three Methods

3 History

4 Computer Implementation

5 Future Work/Projects

6 References

Matthew Kehoe Zeros of the Riemann zeta function March 15, 2022 2 / 85



Introduction

Let s = σ + it. Then the Riemann zeta function is defined by [Tit+86;
Ivi13]

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

, for σ > 1.

By analytic continuation we can extend the Riemann zeta function to the
whole complex plane with a simple pole at s = 1. The zeta function
satisfies the functional equation

ζ(s)πs/2Γ(s/2) = ζ(1− s)π(1−s)/2Γ

(
1− s

2

)
.

From the definition and functional equation, it is straightforward to
compute ζ(s) for σ > 1 or σ < 0.
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Euler Product Formula

The zeta function we have defined encodes a lot about the primes. In
particular, the zeta function admits a product formula which is essentially
an analytical statement of the fundamental theorem of arithmetic. This
product formula, known as the Euler product of ζ(s) is given by

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

, Re(s) > 1, (1)

where the product is over all primes p. It is useful to verify (1), so we
sketch two brief proofs.
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Euler Product Formula

Suppose M and N are positive integers such that M > N. Every n ≤ N
can be uniquely written as a product of primes. These primes are obviously
≤ N, and cannot occur more than M times in the product. So, it follows
that every term in the left of the following inequality shall also be in the
right of the inequality. That is,

N∑
n=1

1

ns
≤
∏
p≤N

(
1 +

1

ps
+

1

p2s
+ · · ·+ 1

pMs

)
.

Taking first M →∞ forms

N∑
n=1

1

ns
≤
∏
p

(
1

1− p−s

)
.
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Euler Product Formula

Then taking N →∞ gives

∞∑
n=1

1

ns
≤
∏
p

(
1

1− p−s

)
.

For the reverse inequality, observe that if we consider all products of
primes such that each prime is ≤ N and does not occur more than M
times, we shall get finitely many distinct integers. Hence

∏
p≤N

(
1 +

1

ps
+

1

p2s
+ · · ·+ 1

pMs

)
≤

N∑
n=1

1

ns
.
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Euler Product Formula

Again taking N →∞ followed by M →∞ forms∏
p

(
1

1− p−s

)
≤
∞∑
n=1

1

ns
,

so that (1) follows from the two inequalities. Another way to verify (1)
(discovered by Euler) uses ideas similar to the Sieve of Eratosthenes. Start
by writing

ζ(s) =
∞∑
n=1

1

ns
.

Then

ζ(s)
1

2s
=
∞∑
n=1

1

ns
1

2s
=
∞∑
n=1

1

(2n)s
,

ζ(s)− ζ(s)
1

2s
=
∞∑
n=1

1

ns
−
∞∑
n=1

1

(2n)s
.
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Euler Product Formula

Therefore

ζ(s)

(
1− 1

2s

)
=

∞∑
n=1
n 6=2k

1

ns
.

Repeating the same procedure gives

ζ(s)

(
1− 1

2s

)
1

3s
=

∞∑
n=1
n 6=2k

1

ns
1

3s
=

∞∑
n=1
n 6=2k

1

(3n)s
,

ζ(s)

(
1− 1

2s

)(
1− 1

3s

)
=

∞∑
n=1
n 6=2k
n 6=3k

1

ns
.
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Euler Product Formula

Continuing for every prime

ζ(s)

(
1− 1

2s

)(
1− 1

3s

)(
1− 1

5s

)
. . . =

∞∑
n=1
n 6=2k
n 6=3k
n 6=5k
...

1

ns
.

Hence we see that

ζ(s)

(
1− 1

2s

)(
1− 1

3s

)(
1− 1

5s

)
. . . = 1,

ζ(s) =
1(

1− 1
2s

) (
1− 1

3s

) (
1− 1

5s

)
. . .

=
∏
p

(
1

1− p−s

)
.

If Re(s) > 1 then the right-hand side of the sieve approaches 1 and
convergence follows from the convergence of the Dirichlet series for ζ(s).
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Trivial zeros

Suppose s = −2k where k is a positive integer. Then we write the zeta
function as

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ (1− s) ζ (1− s) ,

and observe that

ζ(−2k) = 2−2kπ−2k−1 sin (−πk) 2k!ζ(1 + 2k)

= −2−2kπ−2k−1sin (πk)2k!ζ(1 + 2k)

= 0.

Therefore ζ(−2k) = 0 where k is a positive integer. These are known as
“trivial zeros” and are uninteresting. We are interested in locating the
non-trivial zeros in the critical strip where 0 < σ < 1.
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The Critical Strip

Figure 1: The region 0 < σ < 1 where σ = Re(s) for s = σ + it. It is known that
all nontrivial zeros (excluding negative even integers) lie inside this strip.
Furthermore, it is also known that the non-trivial zeros are symmetric about the
real axis and the critical line σ = 1/2.
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The Critical Line

Figure 2: The critical line where Re(s) = 1
2 for s = σ + it. For 0 < σ < 1, the

Riemann hypothesis states that the zeta function does not have any non-trivial
zeros lying off the critical line. These “invalid zeros” are crossed out in the figure.
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Bernhard Riemann

Figure 3: Photo of Bernhard Riemann in 1863. Riemann published a paper in
1859 [Rie59] which first introduced the Riemann hypothesis. He was a student of
Carl Friedrich Gauss who was interested in the distribution of prime numbers.
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The Riemann Hypothesis

Riemann makes his famous conjecture.

Conjecture (Riemann Hypothesis)

Let s = σ + it. Then Re(s) = 1/2 for every nontrivial zero of the Riemann
zeta function.

If the conjecture is true then every nontrivial zero in the critical strip
0 < σ < 1 lies on the critical line consisting of the complex numbers 1

2 + it.
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Hardy’s Theorem

G. H. Hardy then finds a lot of zeros on the critical line.

Theorem (Hardy, 1915)

There are infinitely many nontrivial zeros on the critical line where
Re(s) = 1/2.
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Methods to Find Zeros

There are three common techniques used to find nontrivial zeros of the
Riemann zeta function. They are the

1 Euler-Maclaurin Summation Formula

2 Riemann–Siegel Formula

3 Odlyzko–Schönhage Algorithm

More modern techniques expand upon ideas presented in these three
methods.
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Setup of Euler-Maclaurin Summation Formula

Suppose that f and its derivative are continuous functions on the closed
interval [a, b]. Let

ψ(x) = {x} − 1

2
,

where {x} = x − [x ] is the fractional part of x .

Lemma 1

If a < b and a, b ∈ Z, then

∑
a≤n≤b

f (n) =

∫ b

a
(f (x) + ψ(x)f ′(x)) dx +

1

2
(f (b)− f (a)).

The proof of Lemma 1 follows from the Abel partial summation formula.
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Bernoulli Polynomials

We define Bernoulli polynomials by the following three properties

B0(x) = 1,

B ′k(x) = kBk−1(x), k = 1, 2, . . . ,∫ 1

0
Bk(x) dx = 0, k = 1, 2, . . . .

To determine the polynomials we introduce a generating function

F (t, x) =
∞∑
k=0

Bk(x)
tk

k!
.
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Bernoulli Polynomials

Using this generating function we can find the first few Bernoulli
polynomials:

B0(x) = 1,

B1(x) = x − 1

2
,

B2(x) = x2 − x +
1

6
,

B3(x) = x3 − 3

2
x2 +

1

2
x ,

B4(x) = x4 − 2x3 + x2 − 1

30
,

B5(x) = x5 − 5

2
x4 +

5

3
x3 − 1

6
x ,

B6(x) = x6 − 3x5 +
5

2
x4 − 1

2
x2 +

1

42
.
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Bernoulli Numbers

The Bernoulli numbers are defined by

Bn = Bn(0),

that is, the value of the Bernoulli polynomial at x = 0. The generating
function for the Bernoulli numbers is

F (t) :=
∑
n≥0

Bk
tk

k!
=

t

et − 1
.

It is straightforward to verify F (−t) = F (t) + t so that F (−t)− F (t) = t.
The last equality implies B2k+1 = 0 for k = 1, 2, . . . .
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The function ψk(x)

Define
ψk(x) = Bk({x})

where {x} = x − [x ] is the fractional part of x . Observe that

ψ(x) = ψ1(x) = {x} − 1

2
,

as in Lemma 1. Since {x} is periodic with a period 1, so too are the
functions ψk(x) and they have the generating function

∑
k≥0

ψk(x)
tk

k!
=

tet{x}

et − 1
.

Matthew Kehoe Zeros of the Riemann zeta function March 15, 2022 21 / 85



Setup of Euler-Maclaurin Summation Formula

We now assume that f is twice continuously differentiable in [a, b].
Applying integration by parts to the term ψ = ψ1 in Lemma 1 yields

Lemma 2

Let f be twice continuously differentiable on [a, b] where a < b and
a, b ∈ Z. Then

∑
a≤n≤b

f (n) =

∫ b

a

{
f (x)− 1

2
ψ2(x)f ′′(x)

}
dx +

2∑
`=1

(−1)`

`!
(f `−1(b)− f `−1(a))B`.

Repeating this process and integrating by parts k times gives the
Euler-Maclaurin summation formula.
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Method 1: Euler-Maclaurin Summation Formula

Theorem (Euler-Maclaurin Summation Formula)

Suppose f is k-times continuously differentiable on the interval [a, b] with
a < b, a, b ∈ Z. Then

∑
a<n≤b

f (n) =

∫ b

a

{
f (x)− (−1)k

k!
ψk(x)f (k)(x)

}
dx +

k∑
`=1

(−1)`

`!

(
f (`−1)(b)− f (`−1)(a)

)
B`.
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Method 1: Euler-Maclaurin Summation Formula

Theorem (Euler-Maclaurin Summation Formula (continued))

Suppose f and all its derivatives go to zero as x →∞. Then we obtain by
letting b →∞ (and adding f (a) to both sides)

∞∑
n=a

f (n) =

∫ ∞
a

f (x) dx +
1

2
f (a)−

k∑
`=2

(−1)`

`!
f (`−1)(a)B` −

(−1)k

k!

∫ ∞
a

f (k)(x)ψk(x) dx .

(2)

Here
Bn = Bn(0)

are the Bernoulli numbers and are the value of the Bernoulli polynomial at
x = 0.
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Analytic Continuation

To see how this applies to the Riemann zeta function, let s = σ + it where
σ is the real part of s and t is the imaginary part of s. For σ > 1 we
define the Riemann zeta function as

ζ(s) =
∞∑
n=1

1

ns
, Re(s) > 1. (3)

The series converges absolutely and uniformly in the half-plane
σ = Re(s) ≥ 1 + ε for small ε > 0. We then observe that

|n−s | = |n−σ−it | = n−σ ≤ n−1−ε.

Now apply the Weiestrass M-test to the series

∞∑
n=1

1

n1+ε
,

which is convergent for all ε > 0. The series (3) diverges at s = 1.
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Analytic Continuation

Then apply the Euler-Maclaurin summation formula (2) with k = 1 to (3).
Choosing f (x) = 1/x s , we observe that for Re(s) > 1∫ ∞

1

1

x s
dx =

1

s − 1
.

The summation formula then becomes

ζ(s) =
1

s − 1
+

1

2
− s

∫ ∞
1

1

x s+1
ψ1(x) dx ,

where we once again assume σ > 1. We then observe that if we write

ζ(s)− 1

s − 1
=

1

2
− s

∫ ∞
1

1

x s+1
ψ1(x) dx , (4)

then the right-hand side of the above equation defines a holomorphic
function for σ > 0.
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Analytic Continuation

This follows from bounding the integral on the right-hand side by∣∣∣∣∫ ∞
1

1

x s+1
ψ1(x) dx

∣∣∣∣ ≤ ∫ ∞
1

1

xσ+1
dx <∞, (4)

since |ψ1(x)| ≤ 1/2. We now use the right-hand side (4) to define the
left-hand side of (4) for 0 < σ ≤ 1. The two sides agree for σ > 1. This is
an example of analytic continuation. We have made sense out of the
Riemann zeta function for Re(s) > 0. We see that it has a simple pole at
s = 1 and is holomorphic for all other points Re(s) > 0.

If we apply the Euler-Maclaurin summation formula (2) to (3) for an
arbitrary positive integer k and do a lot of computation we obtain
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Analytic Continuation

ζ(s) =
1

s − 1
+

1

2
+

k∑
`=2

B`
`!
s(s + 1) · · · (s + `− 2) −

(−1)k

k!

∫ ∞
1

s(s + 1) · · · (s + k − 1)x−s−kψk(x) dx

As ψk is 1-periodic and equal to the polynomial Bk(x) on [0, 1), ψk(x) is a
bounded function on all of R. Thus the integral on the right-hand side is
convergent for all σ + k > 1 and thus defines a holomorphic function for
σ > 1− k . By repeating the above argument we see that we have
analytically continued the Riemann zeta function to the right-half plane
σ > 1− k , for all k = 1, 2, 3, . . . . We summarize our findings as
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Analytic Continuation

Theorem (Analytic Continuation)

The Riemann zeta function ζ(s) defined by (3) for Re(s) > 1 can be
analytically continued to C \ {1} where it is holomorphic and at s = 1,
ζ(s) has a simple pole.
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Euler-Maclaurin Formula

It is more practical to choose a number N [BH16] and write

ζ(s) =
N∑
1

1

ns
+

∫ ∞
N

1

y s
bdyc =

N∑
1

1

ns
+ s

∫ ∞
N

{y}
y s+1

+ c(N)
s

1− s
,

which converges for σ > 0 by analytical continuation.

If we choose N properly then ζ(s)−
∑N

1
1
ns won’t be too large and we can

compute the difference through the Euler-Maclaurin summation formula.
It requires O(t). Thankfully, the other methods are faster.
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The Functional Equation of ζ(s)

The functional equation of the Riemann zeta function is

ζ(s) = Π(−s)(2π)s−12 sin
(πs

2

)
ζ(1− s). (5)

Riemann derived this from the familiar

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(1− p−s)−1,

which is valid for Re(s) > 1. Using contour integration (i.e., Cauchy’s
theorem) he was able to extend ζ(s) to all points s ∈ C \ {1}.
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The Function ξ(s)

Let s ∈ R and s > 1. We define

Π(s − 1) :=

∫ ∞
0

e−xx s−1 dx , s > 1,

where Π(s − 1) is used in place of the more familiar Γ(s). Then define the
function ξ(s) by

ξ(s) := Π
( s

2

)
(s − 1)π−s/2ζ(s).

The (s − 1) term in the ξ-function eliminates the simple pole of ζ(s) as
s = 1 so that ξ(s) is an entire function. By the functional equation (5) for
the zeta function we see that

ξ(s) = ξ(s − 1).
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The Function ξ(s)

An important fact about ξ(s) is that it is real when s lies on the line
1/2 + it, t ∈ R, (the set of points called the critical line). This can be
deduced as follows:

For s ∈ R, ξ(s) ∈ R. By the Schwartz reflection principle, ξ(s) = ξ(s), so
that ξ(s) = ξ(s). If s = 1/2 + it, t ∈ R, we may then use the functional
equation (5) to write

ξ(1/2 + it) = ξ(1− (1/2 + it)) = ξ(1/2 + it) = ξ(1/2 + it).

Therefore locating roots on the critical line reduces to locating sign
changes of ξ(1/2 + it). We then observe

ξ(s) = Π
( s

2

)
(s − 1)π−s/2ζ(s) = Π

( s
2
− 1
) s(s − 1)

2
π−s/2ζ(s).
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The Function ξ(s)

Substituting s = 1/2 + it yields

ξ

(
1

2
+ it

)
=

(
eRe[log Π( it

2
− 3

4 )]π−1/4−t2 − 1/4

2

)
×(

e i ·Im[log Π( it
2
− 3

4 )]π−it/2ζ

(
1

2
+ it

))
.

The point is that the first term is always negative, so sign changes in
ξ(1/2 + it) correspond to sign changes in the second term. The second
term is denoted Z (t) and is called the Riemann-Siegel Z function.
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Method 2: Riemann–Siegel Formula

Another prominent mathematician named Carl Siegel worked on
computing zeros in the critical strip. Painstakingly going through
Riemann’s notes, he defined the Z function (around 1932) as

Z (t) := e iθ(t)ζ(1/2 + it),

where

θ(t) = Im

(
log Π

(
it

2
− 3

4

))
− t

2
log π = arg

(
Π

(
it

2
− 3

4

))
− t

2
log π.

The Riemann-Siegel formula is an approximation formula for Z (t). Once
Z (t) is known, a straightforward approximation of θ(t) can be used to
compute ζ(s).

The Z function is important because Z (t) is real when t is real and it has
the same absolute value as ζ(1/2 + it). Z (t) has sign changes at zeros on
the critical line where s = 1/2 + it, so it can be used to locate zeros.
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Method 2: Riemann–Siegel Formula

The function θ(t) is known as the Riemann–Siegel theta function and is
defined in terms of the Π function as

θ(t) := arg

(
Π

(
it

2
− 3

4

))
− t

2
log π,

for real values of t. The argument is chosen so that a continuous function
is obtained and θ(0) = 0 holds, analogously to the way that the principal
branch of the log-gamma function is defined. It has an asymptotic
expansion

θ(t) ∼ t

2
log

t

2π
− t

2
− π

8
+

1

48t
+

7

5760t3
+ · · ·

which doesn’t converge, but whose first few terms give a good
approximation for t � 1.
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Riemann-Siegel Z Function

The Riemann-Siegel Z function is purely real and the equality
|Z (t)| = |ζ(1/2 + it)| holds. So we can think of the Z function as a kind
of real-valued version of the Riemann zeta function on the critical strip.
We will use Gram points to locate zeros of the Z function (and therefore
zeros of the Riemann zeta function on the critical line).

Figure 4: The Riemann-Siegel Z function for small values of t near 0. In dashed,
the value of |ζ(1/2 + it)|.
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Riemann-Siegel Z Function

Glossing over some of the fine points, Siegel was able to show that we can
rewrite the Z function as

Z (t) = 2
∑

n2<t/2π

n−1/2 cos
(
θ(t)− t log n

)
+ Rt ,

where the remainder Rt is

R(t) ∼ (−1)N−1
( t

2π

)−1/4

×
[
C0 + C1

( t

2π

)−1/2

+ C2

( t

2π

)−2/2

+ C3

( t

2π

)−3/2

+ C4

( t

2π

)−4/2
]
.

Most computer implementations of Riemann-Siegel are designed to
calculate a combination of C0,C1,C2,C3, and C4.
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Riemann-Siegel Z Function

Through a bit more analysis, we find

C0 = Ψ(p) =
cos 2π(p2 − p − 1/16)

cos 2πp
,

and set N =
⌊

t
2π

⌋1/2
and p =

(
t

2π

)1/2 −
⌊

t
2π

⌋1/2
. This gives

C1 = −Ψ3(p)

96π2
, C2 =

Ψ2(p)

64π2
+

Ψ6(p)

18432π4
,

C3 = −Ψ′(p)

64π2
− ψ5(p)

3840π4
− Ψ9(p)

5308416π6
,

C4 =
Ψ(p)

128π2
+

19Ψ4(p)

24576π4
+

11Ψ8(p)

5898240π6
+

Ψ12(p)

2038431744π8
.
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Zeros of the zeta function

The Z function and the coefficients C0,C1,C2,C3, and C4 from the
remainder term allow us to find nontrivial zeros of the Riemann zeta
function. Writing ρ = 1

2 + iαj , the first 12 nontrivial zeros are

α1 = 14.134725142, α2 = 21.022039639, α3 = 25.010857580,

α4 = 30.424876126, α5 = 32.935061588, α6 = 37.586178159,

α7 = 40.918719012, α8 = 43.327073281, α9 = 48.005150881,

α10 = 49.7738324781, α11 = 52.970321478, α12 = 56.446247697.

All of these roots are where Z (t) changes sign. A paper from Haselgrove
[Fle61] (in the 1960s) makes finding the coefficients easier (to be discussed
later with code).
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Gram’s Law

Definition: Gram’s law is a direct observation that zeros of the
Riemann-Siegel Z (t) function tend to alternate between what are known
as Gram points. Gram predicted that that there is exactly one zero of the
zeta function between any two Gram points.

This is not an actual law and can be shown to fail indefinitely. Recall that
Siegel defined the Z function as

Z (t) = e iθ(t)ζ(1/2 + it).

Therefore
ζ(1/2 + it) = e−iθ(t)Z (t),

and by Euler’s identity e iθ = cos(θ) + i sin(θ), the equation can be divided
into

ζ(1/2 + it) = cos(θ(t))Z (t)− i sin(θ(t))Z (t).
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Gram’s Law

Provided t ∈ R, the equation can be further simplified to

Re ζ(1/2 + it) = cos(θ(t))Z (t).

Therefore a zero of a real value of the zeta function on the critical line is
directly related to both cos(θ(t)) and Z (t). Alternatively, we see that
Im ζ(1/2 + it) = −i sin(θ(t))Z (t) which implies that a sign change of
Im ζ(s) corresponds to a sign change of either Z (t) or sin(θ(t)).

Therefore, one can think of the Riemann-Siegel formula as a direct
relationship between a sign change of Z (t) and a root where Re(s) = 1/2.
Further analysis shows that Re ζ(1/2 + it) is generally positive while
Im ζ(1/2 + it) alternates between positive and negative values.
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Gram Points

So the zeros of Z (t) tend to alternate with the zeros of sin(θ(t)). This is
known as Gram’s law. A Gram point is a point on the critical line 1/2 + it
where the zeta function is real and non-zero. We know that sin(θ(t)) is
zero at integer multiples of π. Positive values of t where this occurs are
known as Gram points. Matching Gram’s notation, we replace the t in the
Riemann-Siegel theta function θ(t) by gn so that a Gram point occurs
where

θ(gn) = nπ, for all n ≥ −1.

It can then be shown that

ζ

(
1

2
+ ign

)
= cos(θ(gn))Z (gn) = (−1)nZ (gn),

where
(−1)nZ (gn) > 0

Matthew Kehoe Zeros of the Riemann zeta function March 15, 2022 43 / 85



Gram Block

if and only if gn is a Gram point. All the points where (−1)nZ (gn) > 0 are
“good” and all the points where (−1)nZ (gn) ≤ 0 are “bad.” A process to
handle the bad points uses what is known as a Gram block. A Gram block
is an interval gn ≤ t ≤ gn+k in which

gn and gn+k are good

but
gn+1, gn+2, gn+3, . . . , gn+k−1

are bad. The total number of Gram points, both good and bad, give the
number of zeros of Z (t) in the interval 0 ≤ t ≤ gn. To find the number of
roots on the critical line we can count the number of Graham points where
Gram’s law is satisfied. We can then count the number of zeros of Z (t) in
each Gram block.

Matthew Kehoe Zeros of the Riemann zeta function March 15, 2022 44 / 85



Number of Roots up to Height T

Once we find all of the roots on the critical line up to some height T
(using Gram blocks or a different technique), we need to verify that these
are all the roots in the critical strip up to this height.

Let N(T ) denote the number of roots of ζ(σ + it) in the region 0 < ρ < 1
and 0 ≤ τ ≤ T . We would like to have a method of evaluating N(T ) in
order to verify the result of our root finding algorithm based on Gram’s
law. A method that is widely used was developed by A. Turing and is
based on results by J. Littlewood and R. Backlund.
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Number of Roots up to Height T

Riemann found that

N(T ) =
1

2πi

∫
C

ξ′(s)

ξ(s)
ds,

where C is the contour

Figure 5: The contour C created by Riemann.

provided that there are no zeros of ξ on the contour itself.
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Number of Roots up to Height T

This can be verified through the Residue theorem and the fact that ξ is
entire. Using properties of ξ(s) and the functional equation, we can write

N(T ) =
1

π
θ(T ) + 1 +

1

π
Im

(∫
C ′

ζ ′(s)

ζ(s)
ds

)
.

Here the contour C ′ is

where Re(ζ) is non-zero on the contour C ′.
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Number of Roots up to Height T

Backlund then found that∣∣∣∣ 1π Im

(∫
C ′

ζ ′(s)

ζ(s)
ds

)∣∣∣∣ < 2,

which implies that N(T ) is bounded. Under the condition that Re(ζ) is
non-zero on the contour C ′, N(T ) is the nearest integer to 1

πθ(T ) + 1.

Therefore, in order to find the number of roots up to height T , one must
explicitly show that no zeros of ζ(s) lie on the contour C ′. Alternatively,
consider the function

S(T ) = N(T )− θ(T )

π
− 1.
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Number of Roots up to Height T

Then

N(T ) = S(T ) +
θ(T )

π
+ 1 = S(T ) + N0(T ).

Since we already know how to compute θ(T ), finding N0(T ) is easy.
However, computing S(T ) is harder.

In general, S(T ) is typically small and is zero on average. Littlewood,
Turing, and many others have already done a lot of work bounding and
finding estimates for S(T ). We will use their results.
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Number of Roots up to Height T

Littlewood proved

S(t) = O(log(t)),

∫ T

0
S(t) dt = O(T ).

Then Turing found that∣∣∣∣∫ t2

t1

S(t) dt

∣∣∣∣ ≤ 2.30 + 0.128 log
( t2

2π

)
,

when 168π < t1 < t2. For certain Gram points gn, this expression can be
used to bound S(gn) so that N(gn) = n + 1. A. Turing then showed that
we can use the Gram blocks to verify the RH up to height t = gn (I have
omitted most of the details, but a good exposition can be found in the
book by Edwards [Edw01]).
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Number of Roots up to Height T

Another way to analyze N(T ) is to use the asymptotic expansion of θ(T )
to write

N(T ) =
T

2π
log

T

2π
− T

2π
+ O(log(T )).

where Backlund used Jensen’s inequality to show that the inequality∣∣∣∣N(T )−
(
T

2π
log

T

2π
− T

2π
+

7

8

)∣∣∣∣ < 0.137 logT + 0.443 log logT + 4.350

holds for all T ≥ 2. Therefore both

N(T ) ≈ θ(T )

π
+ 1, N(T ) ≈ T

2π
log

T

2π
− T

2π
+

7

8
,

can be used as crude estimates to find the number of roots of ζ(σ + it) in
the region 0 < ρ < 1 and 0 ≤ τ ≤ T .
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Lehmer’s phenomenon

Lehmer’s phenomenon was originally discovered by D. H. Lehmer while
computing non-trivial zeros of the zeta function in 1956. In his own
estimates of the zeros of ζ(s), Lehmer was only able to estimate the C0

term in the Riemann-Siegel formula above. While performing these
calculations, he noticed that some of the sign changes between consecutive
roots of Z (t) appeared to be extremely small. This is now known as
Lehmer’s phenomenon. The phenomenon is a direct observation that
|Z ′(t)| can be extremely small at consecutive t-values between two zeros.

It is important to describe Lehmer’s observations in detail as someone
could use this to (numerically) disprove the Riemann hypothesis. However,
this seems extremely unlikely given the amount of numerical evidence
supporting the Riemann hypothesis.
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Lehmer’s phenomenon

A direct application of the RH states that if the RH is true, then the graph
of Z ′(t)/Z (t) must be monotonically decreasing between the zeros of
Z (t) for all t ≥ t0 (WLOG, we can take t0 = 0). This can be proved by
contradiction. Stated in a different format, the function Z (t) must have a
positive local maximum followed by a negative local minimum (or vice
versa). Two consecutive zeros, ρn and ρn+1, must have a local maximum
or minimum between them which crosses the t-axis of the Riemann-Siegel
Z (t) function.
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Lehmer’s phenomenon

As I calculated around 107 zeros of the Riemann zeta function, I was
interested in observing Lehmer’s phenomenon on my laptop. An instance
of the phenomenon occurred on 17143 ≤ t ≤ 17144.

Figure 6: The function Z (t) where 17142 ≤ t ≤ 17148. At around the t-value of
17143.8, the vertical height above the t-axis is roughly 0.00397. Subtracting
-0.00398 from the value of Z (t) would contradict the Riemann hypothesis.
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Lehmer’s phenomenon

The phenomenon also occurs when 7005 ≤ t ≤ 7006.

Figure 7: The function Z (t) where 7005 ≤ t ≤ 7006. At around the t-value of
7005.1, the Z (t) function is slightly above the t-axis.
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Lehmer’s phenomenon

And when 13, 999, 997 ≤ t ≤ 13, 999, 998.

Figure 8: The function Z (t) where 13, 999, 997 ≤ t ≤ 13, 999, 998. Near the
t-value 13, 999, 997.3 a pair of zeros vary by only 4.4× 10−4.
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Lehmer’s phenomenon

Other people have observed the phenomenon. In particular, Ghaith Hiary
(a student of Andrew Odlyzko) verified the RH at large t-values.

Figure 9: The function Z (t) near t0 = 144, 176, 897, 509, 546, 973, 518.
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Lehmer’s phenomenon

Hiary found a lot of t-values which “almost contradicted” the Riemann
hypothesis. However, none of them violated the rule.

Figure 10: The function Z (t) at a large value of t0.
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Lehmer’s phenomenon

In 2004, Gourdon and Demichel [Gou04] verified the Riemann hypothesis
for the first 1013 nontrivial zeros. They then verified the Riemann
hypothesis at very large heights of 1013, 1014, . . . , 1024. Later in 2020,
Platt and Trudgian [PT20] showed that Riemann hypothesis is true up to
the height of 3 · 1012. So, all zeros of the Riemann zeta-function in the
height 0 < t ≤ 3 · 1012 have σ = 1/2.

Lehmer’s phenomenon would have been a major concern before Odlyzko
verified the Riemann hypothesis near the height of 1012 [Odl87] in the
1980s. Up to the most recent work in 2020, all research has verified the
Riemann hypothesis and no violations have been found.
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Montgomery’s Pair Correlation Conjecture

As many people calculated many zeros of the Riemann zeta function, it is
natural to use statistical tools to find relationships between these zeros. In
1973, Hugh Montgomery and Freeman Dyson discovered that there is an
interesting relationship between the spaces of consecutive zeros of the
Riemann zeta function and the spaces of eigenvalues generated from a
random matrix. This is known as Montgomery’s pair correlation
conjecture. The conjecture states that the pair correlation between pairs
of zeros of the Riemann zeta function (normalized to have unit average
spacing) is

1−
(

sin(πu)

(πu)

)
+ δ(u).

Here δ(u) represents the normalized spacing between zeros.
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Montgomery’s Pair Correlation Conjecture

In the 1980s, Andrew Odlyzko started investigating the statistics of the
zeros of ζ(s). He investigated the distribution of the spacings between
non-trivial zeros using detailed numerical calculations. This work was a
motivating factor to create a more powerful algorithm named the
Odlyzko-Schönhage algorithm which is based off of the Riemann Siegel
formula. Odlyzko found that distribution of zeros agrees with the
distribution of spacings of GUE random matrix eigenvalues in random
matrix theory. All of his calculations were performed on the Cray X-MP
supercomputer.
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Montgomery’s Pair Correlation Conjecture

Writing a nontrivial zero as ρ = 1
2 + iγn, Odlyzko let the normalized

spacings be

δn =
γn−1 − γn

2π
log
( γn

2π

)
.

Given that the Odlyzko-Schönhage algorithm can compute ζ(1/2 + it) in
an average time of tε steps, Odlyzko was able to compute millions of zeros
around heights of 1020. This provided evidence supporting the relationship
between the distribution of zeros of the Riemann zeta function and the
distribution of spacings of GUE random matrix eigenvalues. In particular,
Odlyzko noticed that as more zeros are sampled, the more closely their
distribution approximates the shape of the GUE random matrix.
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Montgomery’s Pair Correlation Conjecture

Pair Correlation Function

Figure 11: The real line describes the two-point correlation function of the
random matrix of type GUE. Blue dots describe the normalized spacings of the
non trivial zeros of Riemann zeta function, for the first 105 zeros.
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Riemann–Siegel Formula

Returning back to the Riemann-Siegel formula. Let t be a real number.
Then we find [BH16]

Z (t) = 2Re

e iθ(t)
∑

n≤( t
2π )

1/2

1

n1/2+it

+ O(t−1/4).

We conclude that it is possible to compute ζ(1/2 + it) to sufficient
accuracy in O(t1/2) time.
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Method 3: Odlyzko–Schönhage Algorithm

Following [OS88] and [Gou04] we recall that the Riemann-Siegel theta
function is

θ(t) = arg
(
π−it/2Π(it/2− 3/4)

)
,

where the argument is defined by continuous variation of t starting with
the value 0 at t = 0. As a consequence, the Riemann-Siegel Z function is
real-valued

Z (t) = e iθ(t)ζ(1/2 + it),

and |Z (t)| = |ζ(1/2 + it)| so the zeros of Z (t) are the imaginary part of
the zeros of ζ(s) which lie on the critical strip. We are lead to find sign
changes of a real valued function to find zeros on the critical strip, and
this is a very convenient property in numerical verification of the RH.
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Setup of the Odlyzko–Schönhage Algorithm

Therefore on the critical line σ = 1/2, the Riemann zeta function satisfies

ζ(1/2 + it) = e−iθ(t)Z (t),

where θ(t) is a real-valued function and as t approaches infinity, θ(t)
satisfies the asymptotic formula

θ(t) =
t

2
log

t

2π
− t

2
− π

8
+

1

48t
+

7

5760t3
+ · · · .

The Riemann-Siegel Z function is a real valued function of the real
variable t which satisfies the Riemann-Siegel expansion

Z (t) = 2
m∑

n=1

cos(θ(t)− t log n)√
n

+ R(t).
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Setup of the Odlyzko–Schönhage Algorithm

We now write the remainder term R(t) as

R(t) = (−1)m+1τ−1/2
M∑
j=0

(−1)jτ−jΦj(z) + RM(t), (6)

where RM(t) = O(t−(2M+3)/4) and the other terms are defined by

τ =

√
t

2π
, m = bτc , z = 2(t −m)− 1.

Similar to the Riemann-Siegel formula, we have explicit forms for the first
few functions of Φj(z).

Matthew Kehoe Zeros of the Riemann zeta function March 15, 2022 67 / 85



The Odlyzko–Schönhage Algorithm

These are

Φ0(z) =
cos
(

1
2πz

2 + 3
8π
)

cos(πz)
, Φ1(z) =

1

12π2
Φ

(3)
0 (z),

Φ2(z) =
1

16π2
Φ

(2)
0 (z) +

1

288π4
Φ

(6)
0 (z).

The general expression of Φj(z) for z > 2 is quite involved and is therefore
omitted. As exposed in [BBC00], Borwein and Bradley obtained explicit
bounds on the error term RM(t). In particular, for t ≥ 200

|R0(t)| ≤ 0.127t−3/4, |R1(t)| ≤ 0.053t−5/4, |R2(t)| ≤ 0.011t−7/4.

In practice one can compute zeros of Z (t) above the 1010-th zero by
choosing M = 1. This choice obtains an absolute precision of Z (t) smaller
than 2× 10−14 and is more than sufficient to locate zeros.
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The Odlyzko–Schönhage Algorithm

The Odlyzko–Schönhage algorithm admits efficient evaluations of Z (t) in
a range of the form T ≤ t ≤ T + ∆, where ∆ = O(

√
T ). For t in this

range, we write

Z (t) =

k0−1∑
n=1

cos(θ(t)− t log n)√
n

+ Re(e−iθ(t)F (t))

+
m∑

n=k1+1

cos(θ(t)− t log n)√
n

+ R(t).

Here R(t) is the remainder term defined by (6) and F (t) is a complex
function defined by

F (t) = F (k0 − 1, k1; t) :=

k1∑
k=k0

1√
k
e it log k ,

with k1 =
⌊√

T/2π
⌋

and k0 a fixed, small integer.
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The Odlyzko–Schönhage Algorithm

In practice, given an interval [T ,T + ∆] and t in this range, the values of
k0 and k1 are fixed in the computation of Z (t). We choose k0 to be small
compared to the value of T 1/2. As m − k1 is bounded (since
∆ = O(

√
T )), the most time consuming part of the evaluation of Z (t) is

the computation of F (k0 − 1, k1; t). To this end, Odlyzko and Schönhage
developed a technique dedicated to a fast evaluation of this sum.
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The Odlyzko–Schönhage Algorithm

To obtain fast evaluations of F (t) = F (k0 − 1, k1; t) in the range
[T ,T + ∆], the Odlyzko–Schönhage algorithm is divided into two steps :

1 Multiple evaluations of F (t) are handled on a well chosen regular grid
of abscissa for t.

2 From these values, an interpolation formula obtains efficiently any
value of F (t) at a certain accuracy provided that t stays in our range.

In particular, Odlyzko handles multi-evaluations of F (t) and
multi-evaluations of derivatives of F (t) on the regular grid. His
implementation uses an interpolation formula (based on Chebyshev
polynomials) for multi-evaluations of F (t).
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Fast multi-evaluation of F (t) on a regular grid

The Odlyzko–Schönhage algorithm approximates values of F (t) at evenly
spaced values

t = T0, T0 + δ, . . . , T0 + (R − 1)δ,

where both δ and R are to be determined. Instead of computing
F (T0),F (T0 + δ), . . . ,F (T0 + (R − 1)δ) directly, the key idea is to
compute their discrete Fourier transform. This transform is defined by

uk =
R−1∑
j=0

F (T0 + jδ)ω−jk , ω = exp

(
2πi

R

)
,

for 0 ≤ k < R.
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Fast multi-evaluation of F (t) on a regular grid

Using the inverse Fourier transform, we obtain

F (T0 + jδ) =
1

R

R−1∑
k=0

ukω
jk .

In the algorithm, the value of R is chosen to be a power of two, so the
values F (T0 + Jδ) are efficiently obtained from the (uk) with an FFT
transform. Both the FFT and IFFT take a small portion of the total
computation time. It is harder to efficiently compute the (uk).

Different research groups apply different methods to calculate (uk). This
is an active area of research today.
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The Odlyzko–Schönhage Algorithm

Using a preconditioner of time O(T 1/2+ε), the Odlyzko–Schönhage
algorithm can evaluate a single value of ζ(1/2 + it) for any
T < t < T + T 1/2 to within ±t−c in O(tε) operations on numbers of
O(log t) bits for any ε > 0.

However, it is difficult to implement the Odlyzko–Schönhage algorithm.
Hiary has stored a portion of his code in a Github repository.
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History: Verification of RH

A history of the verification of the Riemann hypothesis up to n zeros is
shown below [Gou04].

Table 1: Verification of Riemann Hypothesis

Year n Author

1903 15 J. P. Gram
1914 79 R. J. Backlund
1925 138 J. I. Hutchinson
1935 1,041 E. C. Titchmarsh
1953 1,104 A. M. Turing
1956 15,000 D. H. Lehmer
1956 25,000 D. H. Lehmer
1958 35,337 N. A. Meller
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History: Verification of RH

Table 2: Verification of Riemann Hypothesis

Year n Author

1966 250,000 R. S. Lehman
1968 3,502,500 J. B. Rosser, J. M. Yohe, L. Schoenfeld
1977 40,000,000 R. P. Brent
1979 81,000,001 R. P. Brent
1982 200,000,001 R. P. Brent, J. van de Lune, H. J. J. te Riele
1983 300,000,001 J. van de Lune, H. J. J. te Riele
1986 1,500,000,001 J. van de Lune, H. J. J. te Riele, D. T. Winter
1987 Near (∼ 1012) A. M. Odlyzko
1992 Near (∼ 1020) A. M. Odlyzko
1998 Near (∼ 1021) A. M. Odlyzko
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History: Verification of RH

Table 3: Verification of Riemann Hypothesis

Year n Author

2001 10,000,000,000 J. van de Lune
2003 250,000,000,000 S. Wedeniwsk
2004 10,000,000,000,000 X. Gourdon, Patrick Demichel
2020 12,363,153,437,138 Platt, Trudgian

The work of Platt and Trudgian verified the Riemann hypothesis up to the
height of 3 · 1012.
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Computer Implementation

Java code and C code. Time permitting, also talk about Hiary’s
implementation.
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Future Work/Projects

An interested student could work on a variety of different projects
involving calculations of the Riemann zeta function. The projects would
involve implementing (preferably C or Fortran) code to calculate zeros of
the Riemann zeta function. Alternatively, one can analyze the distribution
of spaces between zeros of the zeta function[Odl87]. Some ideas are:

1 Calculate nontrivial zeros through the Euler-Maclaurin Summation
formula (see chapter 6 of [Edw01]).

2 Calculate nontrivial zeros by the Riemann-Siegel formula (see [Pug98]
and [Tak]).

3 Calculate nontrivial zeros by the Odlyzko-Schönhage algorithm (see
[Odl89] and [OS88]).

4 Parallelize the code for items (1)-(2).
5 Investigate Montgomery’s pair correlation conjecture in more detail

(see [Gol05] and [Li]).
6 Analyze the distribution of spaces between zeros (see [FW12] and

[BMN09]).
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