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Goals

@ Develop a numerical algorithm to record scattered energy in a
two—layer periodic structure.

@ Prove a theorem on the existence and uniqueness of solutions to a
system of partial differential equations which model the interaction of
linear waves in periodic layered media.
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Introduction

Maxwell's Equations

As a starting point we consider the time—harmonic Maxwell's equations of
electromagnetism in a homogeneous region:

V x E = iwpoH,
V x H = —iwegeE,
V-E=0,
V-H=0.

o E is the electric field, H is the magnetic field.
@ ¢o and pgp represent the permittivity and permeability in vacuum.

@ c is the complex permittivity, w is the frequency.
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Two—Dimensional Simplifications

@ We choose an interface shaped by z = g(x, y) where the normal is
defined by N := (—0xg, —0,g,1)".

@ To obtain two-dimensional solutions, we assume the grating shape is
invariant in the y—direction:

z = g(x),
which implies that the interfacial normal becomes

N = 0
1
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The Geometry

@ We consider a y—invariant,
doubly layered structure. The

interface z = g(x) is d—periodic
so that g(x + d) = g(x)

o A dielectric (with refractive

index n") occupies the domain
above the interface

T

SW .= {7z > g(x)}.
A two-layer structure with a periodic

@ A material of refractive index
nW
interface, z = g(x), separating two
material layers, S(*) and S(W).
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Introduction

Incident Radiation

T

A two-layer structure with a periodic
interface, z = g(x), illuminated by
plane—wave incidence.

@ The structure is illuminated
from above by monochromatic
plane—wave incident radiation of
frequency w.

@ We consider the reduced
incident fields

E'(x,z) = e“tE/(x, z, 1),
H'(x,z) = e“'H/(x, z, t),

where the time dependence
exp(—iwt) is removed.

@ The scattered radiation is
“outgoing,” upward propagating
in S() and downward propagat-
ing in sw)

£ DA
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Governing Equations for Layered Media

@ In this 2D setting the time-harmonic Maxwell equations decouple into
two scalar Helmholtz problems: Transverse electric (TE) and
transverse magnetic (TM) polarizations.

@ We define the invariant (y) directions of the scattered (electric or
magnetic) fields by {&, w} in S() and S(*) and seek
outgoing/bounded, periodic solutions of

Al + (kY)? =0, z > g(x),
AW+ (k")? =0, z < g(x),
b—w=—0, z = g(x),
Onil — T2ONyW = —ONT, z = g(x).

~i

@ g(x) is the grating interface, &' is the incident radiation.
o 72=1inTE, 72 = (k“/k")% in TM.
e For g € {u,w}, k9 =w/c? is the wavenumber.
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Governing Equations

Governing Equations Without Phase

@ We further factor out the phase exp(iax) from the fields & and W

u(x,z) = e h(x, z), w(x,z) = e " W(x,z).

e With these, our governing equations consist of outgoing/bounded,
periodic solutions of

Au+ 2iadgu + (v*)%u =0, z > g(x),
Aw + 2iadew + (v")*w =0, z < g(x),
u—w=_¢, z = g(x),
onu — ia(@xg)u—72 [Onw — ia(0xg)w] = 1, z = g(x).

e a = k"sin(#), and for q € {u, w}, v9 = k9 cos().

Matthew Kehoe Joint Analyticity (Thesis Defense) May 17, 2022 9/45



Governing Equations

Artificial Boundaries

@ To truncate the bi—infinite problem domain to one of finite size we
choose values a and b such that

a>|g’ooa _b<_’g|ooa

and define the artificial boundaries {z = a} and {z = —b}.
@ In {z > a} the Rayleigh expansions tell us that upward propagating
solutions of the Helmholtz equation are

u(x, z) E ape P ez,

p=—00

@ With this we can define the Transparent Boundary Conditions in the
following way: we rewrite the solution in the upper layer as

[e.9]

o0
u(x,z) = Z (épei75a) e Pxtivp(z—a) — Z épeiﬁx+i75(z_a).

p=—00 p=—00
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Governing Equations

Transparent Boundary Conditions

@ We then observe that

o0

Ozu(x,a) = Y (i78)épe™ =: TU[E(x)],

p=—0c

which defines the order—one Fourier multiplier TY.

@ A similar procedure in the lower layer shows that we can write

(e}

O,w(x,—b) = > (=i e = T¥[p(x)],

p=—0c

for the order—one Fourier multiplier T%.
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Governing Equations

Upward and Downward Propagating Solutions

@ From these we state that upward—propagating solutions of the upper
layer satisfy the Transparent Boundary Condition at z = a

Ozu(x,a) — TY[u(x,a)] =0, z=a.

@ Similarly, downward—propagating solutions in the lower layer satisfy
the Transparent Boundary Condition at z = —b

O,w(x,—b) — T"[w(x,—b)] =0, z=—b.
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Governing Equations

Full Governing Equations

With these we now state the full set of governing equations as

Au + 2iadu + (v4)?u =0, z > g(x),
Aw + 2iadw + (YW)?w = 0, z < g(x),
u—w=, z = g(x),
onu — ia(dcg)u — 72 [Oyw — io(Oxg)w] = 1), z = g(x),
O-u(x,a) — T"[u(x,a)] =0, z=a,
O,w(x,—b) — T"[w(x,—b)] =0, z=—b,

u(x +d, z) = u(x, z),
w(x +d,z) = w(x, z).
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Governing Equations

Domain Decomposition Method

@ We now write our governing equations in terms of surface quantities.
For this we define the Dirichlet traces and their (outward) Neumann
counterparts

U(x) := u(x, g(x)),

U(x) = —Onu(x, g(x)),
W(x) = wx.g(x)), W(x) = duw(x, g(x)).

@ In terms of these our full governing equations are equivalent to the
pair of boundary conditions,

U_W:§7

~U— (ia)(0xg)U — 72 | W — (ia)(08)W| = v

@ The set of two equations and four unknowns can be closed by noting

that the pairs {U, U} and {W, W} are connected, e.g., by DNOs
G:U=U, J:W=W.
Joint Analyticity (Thesis Defense)
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Governing Equations

Interfacial Reformulation

The interfacial reformulation of our governing equations becomes
AV =R,

where

/ —1
A= (G +(0eg)(ia) 72J— 72(8Xg)(ia)> )
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High—Order Perturbation of Surfaces

Numerical Methods

@ A variety of numerical algorithms have been devised for the
simulation of these problems including Finite Difference, Finite
Element, and Spectral Element methods.

@ These methods suffer from the requirement that they discretize the
full volume of the problem domain.

@ We advocate the use of surface methods, especially the High—Order
Perturbation of Surfaces (HOPS) methods:
e provide the solution at the interface.
e only discretize the layer interfaces.
e are highly accurate, rapid, and robust.
@ The HOPS methods are based on the foundational contributions of
o Field Expansion (FE) method: Bruno & Reitich (1993).
o Transformed Field Expansion (TFE) method: Nicholls & Reitich
(1999).
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High—Order Perturbation of Surfaces

Boundary and Frequency Perturbations

@ We take a perturbative approach which makes two smallness
assumptions:

© Boundary Perturbation: g(x) =¢f(x), e € R, e < 1,
@ Frequency Perturbation: w=(1+0)w, d €R, § < 1.

@ The second of these assumptions has the following important
consequences

k1=(1+0)k? a=(1+0d)a, =1+

for g € {u, w}.
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Transformed Field Expansions Method

@ The method of Transformed Field Expansions (TFE) proceeds a
domain—flattening change of variables prior to perturbation expansion.

@ Focusing on the upper layer, the change of variable is
X/:X, 7 =3 (Z—g(X)) ’
a—g(x)
which maps the perturbed domain {g(x) < z < a} to the separable
domain {0 < z’/ < a}.

@ A similar transformation occurs in the lower layer where the perturbed
domain {—b < z < g(x)} becomes {—b < 2/ < 0}.
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High—Order Perturbation of Surfaces

Perturbation Expansions

@ Provided f is sufficiently smooth, we will later show we will show the
joint analytic dependence of A = A(g,0) and R = R(g, d) upon ¢ and
9, will induce a jointly analytic solution, V = V(g, ).

@ In this case we may expand

{A V, R} g, 5 ZZ{An ms nm7 nm}5n5m

n=0 m=0

and a calculation reveals that at every perturbation order (n, m), we
can find the V, ,, by solving

AO,OVn,m = Rn,m - Z Anfé,ovf,m - Z AO,m—rvn r

n—1m-1

- Z Z An—Z,m—rvf,r-

£=0 r=0
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High—Order Perturbation of Surfaces
Order (n, m)

@ A brief inspection of the formulas for A and R, reveals that

/ -1
Ao = ,
00 (Go,o T2Jo,o>
0 0
An,m B <Gn,m 7_2Jn,m>

+0n1 {1+ 6m1} (O«F)(icr) <(1) _(7)_2> , n#0orm#0,

_( Cnm
- (52)

@ 0p,m is the Kronecker delta function and the forms for (, m and ¥, m
are known.
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High—Order Perturbation of Surfaces

Numerical Approximation

@ In our approximation we begin by truncating the Taylor series

{A,V,R}(e, 6) =~ {AMM vVM RVEMY (. 5)

N M
= Z Z{A”J‘m Vrl,m; Rn,m}sn(sma

n=0 m=0

where we must specify (i.) how the forms A, ,, are simulated, and
(ii.) how the operator Ag g is to be inverted.

o Regarding the forms A, ,, these boil down to the (n, m)-th
corrections of the DNOs G and J, respectively, in a Taylor series
expansion of each jointly in € and . We will simulate these
numerically.

@ The inversion of Ag o will follow from the proof of existence and
uniqueness.
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High—Order Perturbation of Surfaces

A Fourier/Chebyshev Collocation Discretization

@ To show how we simulate A, ,,, we will focus on the upper layer
DNO, G. We begin by approximating

u(x,z;e,0) = uMM(x, z;¢,6) : ZZunmxz eom.

n=0 m=0

e Each of these u, m(x, z) are then simulated by a Fourier-Chebyshev
approach which posits the form

Nx/2—-1 N, _,
un,m(X?Z) NMNZ(X z) Z Z Un,m,p,t€ pXTE < 3 > )

p=—Ny /2 (=0

where Ty is the /—th Cheybshev polynomial. The unknowns i, 5 ¢
are recovered by the collocation approach.
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Equispaced Grid Points / Collocation Points

@ As mentioned previously, the Fourier—Chebyshev approach posits the
form

Nx/2—-1 N, 5, _
NX,NZ
Unm(x,z) = (x,2) Z Z lp,m.pe€ iP<T, < > .

p=—Ny/2 {=0

@ More specifically, our HOPS/AWE algorithm requires Ny x N,
unknowns at every perturbation order, (n, m).

@ As our problem is d—periodic in the lateral direction, we will expand
using a Fourier spectral method where we require N, equally—spaced
gridpoints.

@ However, our problem is not z—periodic, so our strategy is to use a
Chebyshev spectral method in the vertical direction. For this, we
select N, 4+ 1 collocation points.
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Simulation of DNOs

@ With this we can simulate the upper layer DNO through

G(x;e,0) = GNM(x;¢,6) Z Z Gp,m(x)e"0™.

n=0 m=0
@ Here

N, /2—1

Gom(X) = Grle(x) = > Gompe™,

p:_Nx/2

and the G, m, are recovered from the @iy, m -
@ We apply the same procedure to the lower layer DNO, J.
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The Rayleigh Expansions

@ Previously, we observed that solutions to the Helmholtz problem in
the upper layer can be expressed in terms of Rayleigh expansions

u(x,z) = Z épeiﬁx"'wgz.

27Tp . u (k”)z—a,%a p Euu,
pi=—— Qpi=a+p, 7=
d ’ g i a%_(ku)Z’ pguu
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Propagating Modes

@ We have

) (kU2 —a2, peu”,

Vp =
i ivJa2 — (ku)2, pgu",

e Components of u(x, z) corresponding to p € U" propagate away from
the layer interface, while those not in this set decay exponentially
from z = g(x).

Uu'={pez| oz,%<(k“)2}.

@ The latter are called evanescent waves while the former are
propagating (defining the set of propagating modes U/") and carry
energy away from the grating.
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The Reflectivity Map

@ With this in mind one defines the efficiencies
A 2
e = (/7)) 137, P U,
@ and the Reflectivity Map as the sum of efficiencies in the upper layer
R := Z €p-
peUY

@ Similar quantities can be defined in the lower layer, and with these
the principle of conservation of energy can be stated for structures
composed entirely of dielectrics

Ze;,’+722e;":1.

peUt peUv
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Energy Defect

@ In this situation a useful diagnostic of convergence for a numerical

scheme is the “Energy Defect”

D:zl—Zeg—Tzze;’,

peUv peUv

which should be zero for a purely dielectric structure.
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Rayleigh Singularities (Wood's Anomalies)

@ The Taylor series expansion for 4, g € {u, w}, is

v8 =36 ny M

e Recalling v3 = (1 + 0)77, k9 = (14 0)k? one finds

o2+ (192 = (k).

o When IZ = 0, the Taylor series expansion of v4(4) is invalid. A
Rayleigh singularity (or Wood's anamoly) occurs when gf, = (k9)2.

@ Therefore, the permissible values of § are constrained by this.
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The Domain of Analyticity

@ To guide our computations we explore this restriction on 9.

@ In the upper layer, Rayleigh singularities occur when gg = (k")?
which implies

2
w:iw{a+7f}’ for any p € Z.

nyY

@ In the interest of maximizing our choice of § we select a “mid—point
value of w which is as far away as possible from consecutive Rayleigh

singularities
@ {a+ 2w(q:1/2)}_

@ Our algorithm will expand in ¢ at the “mid—points” away from
Rayleigh singularities.

Wq = ny
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Wave Scattering

Simulation: Reflectivity Map for Vacuum over Dielectric

R
02 1
0.99
5 e L |
0.15 jd 098
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0.94
0.93
1 2 3 4 5 6
A

]

Figure 1: The Reflectivity Map, R(e,d), and energy defect D computed with our
HOPS/AWE algorithm with Taylor summation. We set N = M = 16 and the
parameter choices were « =0, n* =1, and n"¥ = 1.1.
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Wave Scattering

Simulation: Reflectivity Map for Vacuum over Silver and
Gold

0.05

Figure 2: The Reflectivity Map, R(e, d), for silver (left) and gold (right) with
Padé summation. We set N = M = 15 and parameter choices were o = 0,
n' =1, n" = 0.05+ 2.275/ (left) and n" = 1.48 + 1.883/ (right).
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Joint Analyticity of Solutions

@ The interfacial reformulation of our governing equations is AV = R
and the formulas for A and R at order (n, m) are

/ —1
Apo = <G070 7_2J070> )

0 0
An,m B (Gn,m 7-2Jn,m>

o 14 0n} @000 (] %) n#0erm 2o,

_( Cam
= (7).

@ We will now establish the existence, uniqueness, and analyticity of
solutions to AV = R.

@ To accomplish this we will show the joint analytic dependence of
A = A(g,6) and R = R(g,0) upon ¢ and 6, will induce a jointly
analytic solution, V = V(g, 9).
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Joint Analyticity of Solutions

Theorem: Analyticity of Solutions [Kehoe,Nicholls 22]

Theorem

Given two Banach spaces X and Y, suppose that

H1 R, €Y forall n,m >0, and there exists constants
Br > 0, CR,N > 0, CR,M > 0, Dg > 0 such that

HRn,mHY < CR,NCR,MBEDE?7

H2 A, : X = Y forall n,m >0, and there exists constants
Ba > 0, CA,N > 0, CA,M > 0, D4 > 0 such that

|Anmlx=y < CanCamBADY,

H3 Agg: Y — X forall n,m >0, and there exists a constant Co > 0
such that

HA(?,L})HYAX < Ce.
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Theorem: Analyticity of Solutions (Continued)

Theorem (continued)

Then, given an integer s > 0, if f € C572([0, d]) then the linear system

AV = R has a unique solution, . . Vnme"0™, and there exist constants
B, C,D > 0 such that

IVa,mllyxs < CB"D™,
for all n,m > 0. This implies that for any 0 < p,o <1, > Vpme"™

converges for all € such that Be < p, i.e., e < p/B and all & such that
Dé <o, ie,d<a/D.
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Sketch of Proof

o First, we define the vector—valued spaces for s > 0

X5 = {v _ (“/V)‘ U, W e HH3/2([o, d])},
ys - {R . (_Cw) ‘ ¢ e H32([0, d]), o € H5+1/2([o,d])}.

@ These have the norms

U
ik = | ()
)
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Sketch of Proof (Continued)

@ Hypothesis H1: Consider the Banach spaces X = X® and Y = Y*.
Our first task is to show that

_ Cn,m
Rn,m - <¢n,m> )

is bounded in Y* for any s > 0.
e Upon performing the boundary/frequency perturbations, we define

E(x;e,8) = e (FO"ef),
so that
((x) =¢(x¢,0) = —€(x;€,0),
P(x) = ¥(xie,8) = {i(1+ )" +i(1 + 8)aledcf) } £(x; €, ).
@ A joint Taylor expansion followed by an induction argument shows

that [|Cn,ml| ys+3/2 and [[1n,m|| ys+1/2 are bounded. Therefore,
|IRn,m|lys is bounded.
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Sketch of Proof (Continued)

o Hypothesis H2: Our next task is to show that the operators G,

and J,m in
, (0 0
An,m N (Gn,m 7_2Jn,m> ’

for the Taylor series expansions of the DNOs satisfy the appropriate
bounds.

@ For brevity, we will outline our technique for the Taylor expansion of
the upper layer DNO, G, .

e Lemma (Algebra Property): Given an integer s > 0, there exists a
constant M = M(s) such that if f € C*([0, d]) and u € H*([0, d]x
[0, a]) then

[full s < MF s [lull s -
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Sketch of Proof (Continued)

@ The bound on G, , follows from
@ Applying the boundary and frequency perturbations followed by the
TFE method results in the upper layer DNO problem

Aupm + 2iadxtp m + (1) Unm = Fam(x, 2), 0<z<a,

Umm(XvO) = Un,m(X)v z =0,
8zu,,,m(x, a) - Tu[umm(xva)] = Pn,m(X)a Z = a,
where

Gn,m(f) = _azun,m(xvo) + H",m(X)'

© The Algebra Property establishes bounds on the non—homogeneous
terms Fy m, Pam, and Hy .
© With these, the Elliptic Estimate and an induction argument
establishes
lun,mllps+2 < KB"D™,
for constants K, B, D > 0. This shows that the transformed upper field
is jointly analytic with respect a boundary/frequency perturbation.
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Sketch of Proof (Continued)

@ The bound on G, p, follows from (continued)
© The bound on the upper layer DNO

Gn,m(f) — *azun,m(x70) + Hn,m(X)7

then follows from the joint analyticity of the transformed upper field,
Un m, an induction argument, and the fact that H, , is bounded.
@ One finds
| Gn,mll 22 < Rénbm,

for constants K, B, D > 0 which shows that Gp,m is bounded. A similar
argument works for the lower layer DNO, J, n,, so that A, , is bounded
and H2 is satisfied.
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Sketch of Proof (Continued)

@ Hypothesis H3: Our final task is show that Aa(l) exists and the
estimates and mapping properties of Aa}é hold where Ag g is defined

by
/ —1
Ago = .
. (Go,o 72J0,0>

@ We define the operator
A= Goo+1°Joo = (—ip) + T2 (—ivB),
so that A1 exists and that

A . H$+3/2 N HS+1/2, A_l . HS+1/2 — HS+3/2.
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Sketch of Proof (Continued)

@ Next, we write generic elements of X* and Y~ as

_(V s ro (¢ s
Vo (U)exs me(S) e

@ Using the definitions of the norms of X* and Y* we find
1A0oV3s < ClIV%s

so that Ago maps X*® to Y*. Furthermore,
—-1 2 2
|ActR| . < catIRIZ.

which shows that Aaé maps Y* to X°.

@ Thus, HA&%HYS_»(S is bounded and the mapping properties hold.
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Conclusion

Conclusion

We seek outgoing/bounded, periodic solutions of the scattering problem

Au+ 2iadcu + (v4)?u =0, z > g(x),
Aw + 2iadw + (v¥)?w = 0, z<g
u—w= C? zZ=g X)7

Onu — ia(0xg)u — 2 [Onw — ia(Oxg)w] = 9, z = g(x).

© Numerical Algorithm
e DNOs, boundary/frequency perturbations, and COV through TFE
e Joint Taylor expansion followed by Fourier/Chebyshev collocation
e Simulated scattered energy through Reflectivity map

@ Joint Analyticity of Solutions
o Reformulate governing equations in terms of a linear system
e Sobolev space theory: Algebra Property and Elliptic Estimate

Matthew Kehoe Joint Analyticity (Thesis Defense) May 17, 2022 43 /45



Future Work

© Extend HOPS/AWE algorithm to multilayered surfaces with different
material layers. Introduce a new DNO to handle the intermediate
layers.

@ Implement parallel programming techniques to handle the
computation of the intermediate layers.

© Introduce multiple small perturbation parameters outside of an
interfacial perturbation and a frequency perturbation. Extend the
proof of analyticity to handle any finite number of perturbation
parameters.

© Develop techniques to expand around Rayleigh singularities where the
Taylor series expansion is invalid.
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Conclusion
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