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Introduction and Background

I A fundamental mathematical tool in tomography is the Radon transform.
I For a compactly supported function f : R2 → R, the Radon transform is

defined by

Rf (τ, θ) =
∫ ∞
−∞

∫ ∞
−∞

f (x , y)δ(τ − x cos θ − y sin θ)dxdy

where δ is the dirac delta function and the domain is restricted to τ ∈ [0,∞)
and θ ∈ [0,2π). It is assumed that f is well behaved.

I The Radon transform of a function is frequently called its sinogram.
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Introduction and Background
Radon Transform

Figure 1: Geometric sketch of the Radon transform, which maps f from (x , y) space to
(θ, τ) space. The purple line and the green line denote rotations of their previous position,
as the y -axis, with respect to different CoRs, respectively.
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Introduction and Background

I We implement an optimization-based reconstructive algorithm which
estimates parameters and reconstructs the image concurrently.

I The code we developed interacts with PETSc/Tao.
I We calculate the function value and gradient through the use of

FormFunctionGradient. To do this, we implement two methods
I The first method is the standard reconstruction. The gradient is calculated

without recovering the coordinates of the CoRs.
I The second method is reconstruction with error correction. This method uses an

implicit approach to recover the coordinates of the CoRs for (x∗
θ , y

∗
θ ). A

normalized Gaussian filter is used to dampen high-order Fourier coefficients.
I Variable bounds are set through TaoSetVariableBounds.
I The optimization problem is then solved through TaoSolve.

5 / 10



Parallelization

I We measure the total execution time of reconstructing the Shepp–Logan
phantom image with 1,2,4,8,16, and 32 processors.

I The head phantom image is created through phantom(1000) in Matlab. The
image data is saved to a file with 497581 lines.

I The number of angles (Nθ) is set to 100 while the number of beam positions
(Nτ ) is set to 1415.

I We analyze the results to calculate speedup and parallel efficiency.
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Parallelization
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Figure 2: Left: Execution time for the Synthetic data set as a function of the number of
processors. Middle: Performance of a parallel implementation - Speedup as a function of
the number of processors. Right: Performance of a parallel implementation - Efficiency as
a function of the number of processors.

7 / 10



Results

I We create a high resolution image of the the Shepp–Logan phantom image
by phantom(2000) in Matlab. The image data is saved to a file with 1992337
lines.

I The number of angles (Nθ) is set to 1000 and the number of beam positions
(Nτ ) is set to 2829. The number of processors is set to 32.

I Analysis is performed through reconstructing the image with and without error
correction.
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Results

Figure 3: Left: Ground truth of the Shepp–Logan phantom image created by
phantom(2000) in Matlab. Middle: The reconstructed Shepp–Logan phantom image
without error correction. Right: The reconstructed Shepp–Logan phantom image with
error correction.
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Future Work

I Investigate PIRT functionality with and without error correction on more data
sets.

I Analyze the existing code for further performance improvements (replace
VecSetValue with VecSetValues and make other improvements).

I Decide which Tao solver is best for use with PIRT.
I Investigate theoretical results after our reconstructive algorithm has been fully

optimized.
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