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Introduction and Background

» A fundamental mathematical tool in tomography is the Radon transform.

» For a compactly supported function f : R? — R, the Radon transform is
defined by

Rf(r,0) = / / f(x,y)o(T — X cos @ — ysin 6)dxdy

where ¢ is the dirac delta function and the domain is restricted to 7 € [0, o0)
and 6 € [0, 2). It is assumed that f is well behaved.

» The Radon transform of a function is frequently called its sinogram.



Introduction and Background

Radon Transform

o Theoretical CoR (0, 0)
o Experimental CoR (z3,v5)
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Figure 1: Geometric sketch of the Radon transform, which maps f from (x, y) space to
(6, 7) space. The purple line and the green line denote rotations of their previous position,
as the y-axis, with respect to different CoRs, respectively.
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Introduction and Background

v

We implement an optimization-based reconstructive algorithm which
estimates parameters and reconstructs the image concurrently.

The code we developed interacts with PETSc/Tao.

We calculate the function value and gradient through the use of
FormFunctionGradient. To do this, we implement two methods
» The first method is the standard reconstruction. The gradient is calculated
without recovering the coordinates of the CoRs.
» The second method is reconstruction with error correction. This method uses an
implicit approach to recover the coordinates of the CoRs for (x;, y; ). A
normalized Gaussian filter is used to dampen high-order Fourier coefficients.

Variable bounds are set through TaoSetVariableBounds.
The optimization problem is then solved through TaoSolve.
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Parallelization

» We measure the total execution time of reconstructing the Shepp—Logan
phantom image with 1,2,4, 8,16, and 32 processors.

» The head phantom image is created through phantom(1000) in Matlab. The
image data is saved to a file with 497581 lines.

» The number of angles (Ny) is set to 100 while the number of beam positions
(N,) is set to 1415.

» We analyze the results to calculate speedup and parallel efficiency.
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Parallelization
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Figure 2: Left: Execution time for the Synthetic data set as a function of the number of
processors. Middle: Performance of a parallel implementation - Speedup as a function of
the number of processors. Right: Performance of a parallel implementation - Efficiency as
a function of the number of processors.



Results

» We create a high resolution image of the the Shepp—Logan phantom image
by phantom(2000) in Matlab. The image data is saved to a file with 1992337
lines.

» The number of angles (Ny) is set to 1000 and the number of beam positions
(N;) is set to 2829. The number of processors is set to 32.

» Analysis is performed through reconstructing the image with and without error
correction.



Results
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Figure 3: Left: Ground truth of the Shepp—Logan phantom image created by
phantom(2000) in Matlab. Middle: The reconstructed Shepp—-Logan phantom image
without error correction. Right: The reconstructed Shepp-Logan phantom image with

error correction.
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Future Work
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Investigate PIRT functionality with and without error correction on more data
sets.

Analyze the existing code for further performance improvements (replace
VecSetValue with VecSetValues and make other improvements).

Decide which Tao solver is best for use with PIRT.

Investigate theoretical results after our reconstructive algorithm has been fully
optimized.

v

v

v

10/10



	Introduction and Background
	Parallelization
	Results
	Future Work

