Matthew Kehoe

Data/Research Scientist

https://www.linkedin.com/in/matthewshawnkehoe/

Research Interests

- o Applied mathematics and computational science
- o Numerical analysis and partial differential equations
- o Machine learning and natural language processing
- o Acoustics and electromagnetics
- High performance computing
- o Calculating zeros of the Riemann zeta function

Education

University of Illinois at Chicago <i>Ph.D. in Applied Mathematics</i>	Chicago, IL 2018–2022
Advisor: Professor David Nicholls	
Thesis: Joint Analyticity of the Transformed Field and Dirichlet-Neumann Op	perator in Periodic Media
University of Michigan at Dearborn	Dearborn, MI
M.S. in Computational Mathematics	2013–2015
Advisor: Professor Frank Massey	
MS Project: Computational methods for the Riemann zeta function	
University of Otago	Dunedin, New Zealand
Exchange student	2010
Oakland University	Rochester, MI
B.A. in Economics	2006–2010

Employment and Internships

Michigan Tech Research Institute	Ann Arbor, MI
Research Scientist	August 2022 – Present
University of Illinois at Chicago	Chicago, IL
Graduate Research and Teaching Assistant	2018–July 2022
Cold Regions Research and Engineering Laboratory	Hanover, NH
NSF Mathematical Sciences Graduate Internship	Summer 2020
Argonne National Laboratory	Lemont, IL
NSF Mathematical Sciences Graduate Internship	Summer 2019
Workforce Software	Livonia, MI
Software Consultant/Programmer	2010–2017
Oakland University	Rochester, MI
Web Developer	2009–2010
Spec Associates	Detroit, MI
Strategic Research Intern	2009–2010

2009-2010

Publications

1: M. Kehoe and D. Nicholls, "A Stable High–Order Perturbation of Surfaces/Asymptotic Waveform Evaluation Method for the Numerical Solution of Grating Scattering Problems," Journal of Scientific Computing 100 (1), 9 (2024). Manuscript.

2: M. Kehoe and D. P. Nicholls, "Joint Geometry/Frequency Analyticity of Fields Scattered by Periodic Layered Media," SIAM Journal on Mathematical Analysis, Volume 55, Issue 3, 1737-1765 (2023). Manuscript.

Teaching Experience

University of Illinois at Chicago

Graduate TA: Lead recitation sessions and assisted students with coursework in

- Calculus 1 (4 semesters)
- Numerical Analysis (2 semesters)
- Differential Equations (1 semester)
- Mathematical Biology (1 semester)
- Precalculus (1 semester)

My student reviews are listed here.

Mathematical Modeling Experience

Michigan Tech Research Institute Computational Electromagnetics and Signal Processing

- o Developed algorithms to automate the identification of moving ground vehicles using synthetic aperture radar (SAR).
- o Corrected geometric distortions and deformations at reflected energy point locations using affine transformations.
- Used the Pycharm IDE to build new programs to identify point locations from scattered energy.

University of Illinois at Chicago

High–Order Perturbation of Surfaces (HOPS)

- o Investigated the existence and uniqueness of solutions to a system of partial differential equations which model the interaction of linear waves with multilayered media.
- o Implemented the HOPS algorithm to produce highly accurate, rapid, and robust numerical schemes.
- Proved joint analyticity of the transformed field with respect to two small physical parameters.
- Developed spectral element methods in the Matlab programming language.

Cold Regions Research and Engineering Laboratory	Virtual Summer Internship
Mathematics Research Internship	2020

- Wrote Fortran code in the Elmer finite element software for multiphysical problems.
- o Compared competing models which predict thaw depths, frost heave, and thaw settlement in pavements.
- o Collaborated with other researchers at CRREL and improved the accuracy of the thermodynamic model.

Argonne National Laboratory

Mathematics Research Internship

- \circ Developed a parallel algorithm in C++ to replace existing Matlab code.
- Used the Radon transform and its inverse to test the parallel efficiency and speedup on the Beebop supercomputer at Argonne.

2019

Research 2022-2022

Chicago, IL 2018-2021

Thesis

2019-2022

Summer Internship

o Collaborated with other scientists at Argonne and presented my results at the summer student symposium.

University of Michigan at Dearborn	MS Project
Zeros of the Riemann Zeta Function	2015

o Wrote Java code to calculate millions of nontrivial zeros of the Riemann zeta function.

o Implemented the Riemann-Siegel formula in combination with the Cauchy-Schlömilch transformation.

o Investigated Lehmer's phenomenon and the distribution of spacing between zeros.

Data Science

Manning	Ann Arbor, MI
Build a Large Language Model (From Scratch)	2024
Coursera	Online
Generative AI for Everyone	2024
Manning	Ann Arbor, MI
Deep Learning with Python	2023-2024
Thinkful Data Science Bootcamp	Online 2023-2024
DataQuest	Online
Data Science in Python	2023
Coursera	Online
DeepLearning.AI Deep Learning Specialization	2022

Presentations

2024: Building a NLP Information Retrieval System with Trip Advisor. Ann Arbor Machine Learning Group. Notebook 1, Notebook 2, Dash App.

2024: Scaling-up model training with GPUs and TPUs. Data Science & Machine Learning Collaborative Learning Group.

2024: Generative Adversarial Networks and Unsupervised Learning. Data Science & Machine Learning Collaborative Learning Group.

2024: **Neural Style Transfer, Variational Autoencoders, and Supervised Learning.** Data Science & Machine Learning Collaborative Learning Group.

2023: **Transformers and Natural Language Processing.** Data Science & Machine Learning Collaborative Learning Group.

2023: Deep Learning for Timeseries. Data Science & Machine Learning Collaborative Learning Group.

2023: **Interpreting what convnets learn.** Data Science & Machine Learning Collaborative Learning Group. Slides.

2022: Joint Analyticity of the TFE Method and DNO in Periodic Media, Thesis Defense. Slides.

2022: Wave Scattering in Periodic Media, Graduate Student Colloquium, Graduate student talk. Slides.

2021: Calculating zeros of the Riemann zeta function, UIC Math Club, Graduate student talk. Slides. **2020**: The FROST and FROSTb Models, Summary of research performed at summer internship, CRREL. Graduate student talk.

2019: **Parallel Iterative Tomographic Reconstruction**, LANS Summer Argonne Students Symposium, Argonne National Laboratory. Graduate student talk.

2018-2021: UIC Graduate Analysis and Applied Mathematics Seminar

- Water Waves, Shallow-Water Equations, and Tsunamis (10/20/2021)
- Applications of Pseudo-differential operators (04/08/2021)
- Pseudo-differential operators on \mathbb{R}^n (03/25/2021)
- High-Order Pertubation of Surfaces (HOPS) Method (02/11/2021)
- The Riemann zeta function and Padé approximants (11/07/2018)

2013: Calculating the radiant of the Perseid meteor shower, CUREA Program Physics 2013. Undergraduate student talk. CUREA Reflections 2013.

Workshops and Summer Schools

Argonne National Laboratory	Virtual School
Argonne Leadership Computing Facility (ALCF) AI for Science Training Series	2021–2022
Mathematical Sciences Research Institute	Virtual School
Graduate Summer School on Mathematics of Big Data: Sketching and Linear Algebra	2021
Mathematical Sciences Research Institute	Virtual School
Graduate Summer School on Microlocal Analysis: Theory and Applications	2021
Mathematical Sciences Research InstituteVWorkshop for Recent Developments in Fluid Dynamics	'irtual Workshop 2021
Mathematical Sciences Research Institute	Virtual School
Graduate Summer School on Water Waves	2020
Toyota Technological Institute at Chicago	Chicago, IL
Summer School on Machine Learning	2018
CUREA Program Physics	Pasadena, CA
Summer School on Observational Astronomy	2013

Computer Skills

Tools and Languages: Python, Julia, Matlab, Bash, C++, &TEX

Packages: Tensorflow, Keras, PyTorch, Scikit-Learn, NumPy, SciPy, Matplotlib, Chebfun **Quantitative Research**: Mathematical Optimization, Mathematical Modeling, SQL

OS: Linux, Windows

Projects: Data Science, Machine Learning, Computational Electromagnetics, Computational Number Theory

Honors and Awards

2022: Graduate Student Travel Grant (JMM 2022), American Mathematical Society

2021-2022: Victor Twersky Memorial Scholarship, University of Illinois at Chicago

2014–2015: Applied and Computational Mathematics Graduate Scholarship, University of Michigan at Dearborn

2010: Alumni Association Scholarship, Oakland University

2009: Member of Omicron Delta Epsilon (International Honor Society in Economics)

References

David Nicholls

Department of Mathematics University of Illinois at Chicago Chicago, IL 60607 ☑ davidn@uic.edu

Gerard Awanou

Department of Mathematics University of Illinois at Chicago Chicago, IL 60607 ☑ awanou@uic.edu

Membership

Jerry Bona

Department of Mathematics University of Illinois at Chicago Chicago, IL 60607 ☑ jbona@uic.edu

John Steenbergen (Teaching) Department of Mathematics

University of Illinois at Chicago Chicago, IL 60607 ☑ jbergen@uic.edu

American Mathematical Society (AMS) Society for Industrial and Applied Mathematics (SIAM)